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Abstract
This paper proposes a deep multi-task learning framework to predict the next loca-
tion from trajectories that are captured by external sensors (e.g., traffic surveillance 
cameras, or speed radars). The reported positions in such trajectories are sparse, due 
to the sparsity of the sensor distribution, and incomplete, because the sensors may 
fail to register the passage of objects. In this framework, we propose different pre-
processing steps to align the trajectories representation and cope with a missing data 
problem. The multi-task learning approach is based on Recurrent Neural Networks. 
It utilizes both time and space information in the training phase to learn more mean-
ingful representations, which boosts the learning performance of location predic-
tion. The multi-task learning model, together with the preprocessing step, substan-
tially improves the prediction performance. We conduct several experiments using 
a real dataset, and they demonstrate the validity of our multi-task learning model in 
terms of accuracy of 85.20%, which is more than 20% better than using a single-task 
learning model.

Keywords  Location prediction · External sensors trajectories · Multi-task learning · 
Recurrent neural networks

1  Introduction

The high availability of tracking data brought opportunities for researches and indus-
try to provide new methods to analyze and understand mobility patterns. Among 
the possible analysis, mobility prediction has gained some attention given its appli-
cability. In general, the mobility prediction problem consists in inferring the next 
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relevant location of a moving object based on historical information and its most 
recent tracking. Many applications, such as smart transportation, traffic control, 
urban planning, and recommendation systems, can benefit from mobility prediction.

Unlike previous works that use GPS, in this work, we predict the movement of 
objects under the circumstance where their trajectories are captured by external 
sensors (e.g., traffic surveillance cameras) placed on the road-sides. Each sensor 
captures and registers the passage of moving objects. Assuming that each record 
contains enough information to identify the associated moving object uniquely, for 
instance, identifying vehicles by their plates, it is possible to derive from them (i.e., 
from the recorded information by different sensors) the trajectories of the moving 
objects as a sequence of sensor positions.

The location prediction from such kind of data is useful, especially for govern-
ment agencies where GPS data is not available, for instance, police patrol applica-
tions to track criminals or traffic offenders; and traffic surveillance applications, 
among other services.

In [2] three levels of mobility prediction are considered: (1) object position; (2) 
path prediction; and (3) next place prediction. In levels 1 and 2, usually, the models 
learned from raw trajectories obtained by Global Positioning System (GPS) devices, 
and their predictions consider the movement of the object. Level 3 predicts stops 
rather than movements, usually by learning from sequences of points of interest or 
georeferenced events. While levels 1 and 2 perform fine granularity predictions, 
level 3 yields high-level predictions.

This work is in between level 1 (object position prediction) and level 2 (move-
ment and path prediction). But different from what is usually found at level 1, these 
positions are predefined and more sparse than the case of continuous positioning 
with GPS. As in level 2, the positions are part of the object path, thus considering 
the road network constraints may improve predictions.

It is worth noting that in our context, object movements are constrained by a road 
network, and their observation only occurs at fixed (predefined) positions (i.e., sen-
sors’ location) on the road network. This assumption turns our prediction problem 
different from (i) the ones that consider GPS trajectories, which occur at any spatial 
location as [17] and [6] to name a few; and (ii) the next (stop) location prediction, 
usually applied to points of interest (PoIs) or event places as [11, 21, 9] and [20], 
since we predict movement rather than stops. So, despite many works on the litera-
ture in mobility prediction, to the best of our knowledge, none of those works have 
studied mobility prediction for trajectories based on external sensor data. We call 
this problem External Sensor Trajectory Prediction (EST Prediction for short).

Recurrent Neural Networks (RNN) are one of the most effective approaches to 
predict sequenced data as they can learn the relationship between consecutive values 
in a sequence. Recently, applying RNN to predict the next stop has demonstrated 
the potential of these approaches to capture the complexity of mobility data. The 
works at level 3, usually apply RNN to trajectories modeled as a sequence of labels, 
each label representing a location (region or point of interest) where the moving 
object has stopped. We can also model our problem as a sequence of sensors’ labels, 
allowing us to apply RNN to EST prediction. Thus, we aim to investigate the follow-
ing questions: (1) Can RNN adapt to incompleteness and sparsity of EST? (2) How 
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different data imputation strategies impact RNN models? (3)  How to access the 
quality of predictions given the fact that the ground truth could be missed and thus 
unknown?

In this paper we tackle the problem introduced above and provide the following 
contributions: 

1.	 An in-depth study to characterize the challenges to deal with trajectories derived 
from external sensor data;

2.	 Methods for coping with the problem of the incompleteness and sparsity of this 
data and their comparisons;

3.	 A recurrent multi-task learning approach to utilize both temporal and spatial 
information in the training phase to jointly learn more meaningful representations 
of time and space, which boosts the performance to EST prediction;

4.	 An extensive experimental evaluation over a real-world dataset, where we assess 
the validity of our proposal in terms of quality of results.

The remainder of this paper is organized as follows. Section 2 presents the problem 
statement. Next, we discuss some related works in Sect. 3. Section 4 highlights the 
imperfection of ESTs. Section 5 presents the proposed solution. In Sect. 7, we dis-
cuss the results of our experimental evaluation. Finally, in Sect. 8 we conclude the 
paper and discuss the future work.

2 � Problem statement

Given a set of external sensors placed on road-sides which register the passage of 
moving objects and assuming it is possible to uniquely identify the moving objects 
(for example, by recording the vehicle plate), we call external sensor trajectories 
(EST) the ones derived from the observations captured by these sensors. In this 
work, we consider the sensors are imperfect and thus produce incomplete trajecto-
ries with missing data. Figure 1 presents a real trajectory of a bus collected from 
external sensors in one day; in such trajectory, the bus travels along the same route 
many times. The points (in green) represent the sensors, and sensors are connected 
by the lines (in red) when they appear in sequence on the same trajectory. We can 
observe that some sensors are skipped (not connected to the next expected sensor) 
despite the fact that the bus had done the same route. This is because, in such cases, 

Fig. 1   Example of trajectory 
with missing sensors. The points 
represent the sensors and sen-
sors are connected by the lines 
when they appear in sequence 
on the same trajectory
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some sensors failed to capture the passage of the bus. Hereafter, we show some defi-
nitions to support our problem statement.

Definition 1  (External Sensor Observation) When an external sensor (ES) s reg-
isters the passage of a moving object m at a time t, it produces a tuple o = (m, s, t) . 
However, the sensors may fail to capture the passage of a moving object.

Definition 2  (External Sensor Trajectory) Let O be the set of observations gener-
ated by a set of sensors S. Let O[m] ⊂ O be the set of observations related to the 
moving object m. Then, we define an external sensor trajectory (EST) of a mov-
ing object m that can be extracted from O[m], as a the sequence of observations 
es_trajm =

⟨
o1, o2,… , oj

⟩
 such that ∀i, 1 ≤ i ≤ j, oi ∈ O[m] and t(oi) ≤ t(oj).

In the experiments, we restrict trajectories to a period of 24 hours. Now, we are 
ready to present the next sensor prediction problem.

Problem definition [External Sensor Trajectory Prediction] Let G be a road net-
work, S the set of external sensors deployed over G, O the set of historical observa-
tions produced by S, M the set of moving objects referred by the observations in O, 
and TEST the set of historical trajectories derived from O describing the movement 
behaviors of the objects in M. Given the last w most recent observations in time and 
space of a moving object m ∈ M produced by O, the problem consists of predicting 
the next sensor to be visited by m.

2.1 � Characteristics of external sensor trajectories

Different from classification problems with many classes, to learn from trajectories 
we have to consider complex transitions patterns and time-dependence. As the sen-
sors have spatial relationships among them, the proximity of the predicted value to 
the actual registered value is also important. Furthermore, the trajectories obtained 
from external sensors have several particularities that provide new opportunities 
while raising some challenges. 

1.	 Huge data Sensors continuously capture a massive number of observations per 
day. The application needs to ingest multiple sensors data streams, compute the 
last observations of the moving object and make predictions online. The complex-
ity to manage these tasks increases with the number of vehicles.

2.	 Exhaustive types of trajectories Moving objects are not restricted to a specific 
fleet of vehicles as usual in GPS data collection. Commuters, a fleet of taxis or 
buses, deliveries, etc., are all tracked by the road-side sensors. Thus, trajectories 
can have very different patterns. For example, commuters usually have temporal 
repetitively behavior like go to work and return home every week-day; on the 
other hand, taxis may have very different behaviors that depend on their passen-
gers.
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3.	 Sparsity The sensors are located in fixed positions, usually only on the main 
roads of the city. The complete tracking of moving objects is not available, and the 
reported positions per trajectory are very sparse in space and time. The sparsity 
turns the trajectories shorter and with fewer data points, making the prediction 
harder.

4.	 Incompleteness and uncertainty Sensors may fail to capture the passage of a 
vehicle, producing incomplete trajectories. It is not self-evident when one obser-
vation is not in the dataset because the sensor failed (most of the time when 
its battery discharges), or if it is because the object did not pass by the sensor. 
Incomplete trajectories bias the prediction since the model learns from wrong 
data. For example, moving objects which executed the same path may have a 
different sequence of locations (as explained before and exemplified in Fig. 1).

Finally, we assume that EST is constrained by the topology of the network; this may 
help to compensate the sparsity and incompleteness of the trajectory observations.

3 � Related work

In the literature, there exists a vast amount of works dealing with the problem of 
location prediction and mobility learning. In the context of this work, we give an 
overview of two main classes of works that are of interest: the first proposes predic-
tion models for location prediction, while the second class employs spatiotemporal 
multi-task learning.

3.1 � Prediction models for location prediction

MyWay [18] is a system that predicts the position of the next movement of an 
object. MyWay uses the spatial match of trajectories with a set of profiles obtained 
by cluster the raw trajectories. The paper [17] proposed TPRED, an approach based 
on a Prefix-Tree to predict the next stop and when the user will leave the current 
location. TPRED mines the stops from raw trajectories, based on the time the user 
spends in a place. These works consider trajectories captured by GPS, and cannot be 
applied directly for sensor trajectory prediction. TPRED needs dense trajectories to 
mining stops. Although, MyWay forecasts the next movement, the similarity meas-
ure to cluster and match trajectories is not appropriated for very sparse trajectories.

The work of [16] predicts the next stop of indoor trajectories based on groups 
of users who share some characteristics (like gender and age). From the sequential 
rules, the method estimates the probability of visiting a specific location given the 
recent movement of the user and his group. GMove [22] uses spatial and temporal 
information, and geo-tagged text, extracted from social media, to predict the next 
stop of one user based on a group-level mobility model. GMove model is an ensem-
ble of Hidden Markov Models (HMM); each HMM is built using a group of users 
that share similar movements. These works consider extra information not available 
for sensor trajectories.
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The work of [1] proposed a Dynamic Bayesian Network (DBN) to predict the 
next location using data from call details records (CDR) taking into account the 
sparsity of this data. To solve the sparsity problem, their model incorporates pat-
terns of users with similar trajectories. Besides the sparsity of CDR data, it is dif-
ferent from external sensor data since each location in CDR data covers an entire 
region, not one exact position.

The paper [11] proposes Seq2Seq, an attention-and an encoder-decoder 
LSTM(Long Short-Term Memory)-based learning approach to model seman-
tic trajectories and predict the next location. LSTM extends RNNs and has been 
extensively used in sequence to sequence tasks since it processes variable-length 
input and can allow highly non-trivial long-distance dependencies to be easily 
learned. The attention mechanism in Seq2Seq gives the ability to store inputs and 
previous states for a long period of time, as well as to delete them when neces-
sary. Seq2Seq accepts both raw GPS data as well as pure semantic location to 
train the model.

RNN was also successfully applied in Natural Language Processing to capture 
dependence between terms of sequences [15]. More recently, applying Recurrent 
Neural Networks (RNN) to location prediction has demonstrated the potential of 
these approaches to capture the complexity of mobility data. A Spatial-Temporal 
Recurrent Neural Network (ST-RNN) was proposed in [14] to predict the next 
location dealing with continuous values in spatial and temporal contexts. SERM 
[21] is a spatial-temporal model to predict the next stop using semantic trajecto-
ries from Social Media. The model of SERM uses spatiotemporal information 
and a bag-of-words obtained from check-ins, these features are mapped into a 
one-hot vector, the embedding layers are responsible for reducing the dimension, 
the features are concatenated, and the result is the input of the RNN. Finally, 
a vector with user preferences is summed to the output of RNN. TA-TEM [23] 
is a recommendation system for the next location, which predicts the next stop 
by learning from the sequence of check-ins and considering the preferences of 
each user in different levels of time and general user preferences. DeepMove [6] 
uses attention recurrent networks to predict the stop on the next time window. 
DeepMove uses a module to capture the mobility regularity and output the most 
related context vector to the current trajectory. DeepMove combines the context 
vector and the output of RNN to make the predictions.

To the best of our knowledge, only the approaches of [19] and [20]solve the 
trajectory prediction problem under road-network restrictions. Both of them are 
based on Recurrent Neural Networks. However, these works consider dense GPS 
trajectories as input. For [20], a trajectory is a sequence of edges in the road net-
work. The problem is to predict the next road segment of a moving object, given 
its most recent past trajectory. The main idea of their approach is to change the 
activation function by applying a mask that nullifies illegal transitions based on 
the adjacency matrix of the road network. The authors in [19] apply a feature 
extraction that maps GPS trajectories in referenced points on the road network; 
then they use LSTM to make predictions. There are also works, like [10] which 
predict movement without learning from the historical data but by applying pre-
dictive query.
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3.2 � Spatiotemporal multi‑task learning of mobility

Multi-task learning refers to models that learn multiple related tasks simultaneous to 
improve the overall performance [8].

The paper [9] proposes a semi-markov continuous-time Bayesian network model 
that jointly learns the user activity timing and location sequences based on incom-
plete activity participation information found in check-in data. The model predicts 
the next activity participated by an individual, the transition time from the current 
activity to the next one, and his/her next location given the next activity type and the 
current location.

In [13], the authors propose a model to predict travel time based on a multi-task 
learning framework to jointly learn the main task as well as other auxiliary tasks. In 
their model, different tasks share most part of parameters except the output layer, 
that is unique for each task. They used pre-trained learned representations for links 
on road-network based on unsupervised graph embedding techniques. For spatial 
and temporal features they create a spatial graph and a temporal graph, respectively. 
For the spatial grid representation, they used the concatenation of latitude and lon-
gitude embedding and for temporal representation, they used the concatenation of 
the time in the day and day of the week. Then, the model learns meaningful rep-
resentations using path information available on the training period. The approach 
proposed in [13] predicts travel-time, but not the next location.

The paper [8] proposes the multi-task learning framework TITAN. The model is 
trained using data from incident records. For each incident occurrence, the traffic 
speed readings of minutes before and after the occurrence are given by the model, 
and it predicts the future impact of this given incident in terms of the temporal 
duration of this traffic incident. TITAN also combines the information of the road 
network connectivity in its model design since an incident occurrence could not 
only cause traffic pattern change at local road segments but also spreads the pat-
tern change on other adjacent roads that have a close spatial correlation. The prob-
lem addressed by [8] is different from the location prediction targeted in this paper. 
However, it shows the importance of multi-task learning for spatiotemporal features.

4 � Data sparsity and incompleteness

In this section, we study the sparsity and incompleteness of sensors data. We ana-
lyzed 272 sensors from Fortaleza city in September 2017, these are used in a real 
application. Initially, we have 22,338,916 observations at all. For each day, we com-
puted the trajectories from the sequences of observations of the same moving object. 
After that, we partitioned the trajectories according to a pre-defined condition (we 
explain in the following), and then we discard the shortest trajectories. The reason is 
to avoid train the model on short sequences, which would bias the prediction since 
we use a sliding window of k observations to predict the next one. Furthermore, a 
minimum number of observations is needed to train the models. We chose six as the 
minimum length for this analysis. This means that each moving object trajectory 
passed by at least six sensors.
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Let �sk ,sk+1
 be the average and �sk ,sk+1 be the standard deviation of the displacement 

time between the sensors sk and sk+1 . Let the trajectory ⟨o1, o2,… on−1, on⟩ , consider 
we split such trajectory into two sequences: ⟨o1, o2,… oi⟩ and ⟨oi+1,… , on⟩ when 
( ti+1 − ti ) > ( �sk ,sk+1

+ 2�sk ,sk+1
 ). This condition captures an unusual behavior on the 

path from sk to sk+1 . Then, we filtered out the trajectories with less than six obser-
vations. In the end, only 825,218 trajectories have more than six observations for 
236,517 distinct vehicles. This means an average of 3,48 trajectories per vehicle.

From this point, we define a transition sk → sk+1 as two sensors sk and sk+1 that 
appear consecutively on the same trajectory. In this case, the transition starts at sk . 
In the following, we show the analysis we performed using sensors observations, 
trajectories transitions and by applying data imputation.

4.1 � Analysis of sensor transitions

In this analysis, we investigate the sparsity of the sensors by analyzing the observed 
transitions between them. We first computed the road network distance between 
the sensors that appear in a transition for the set of trajectories analyzed. Figure 2a 
shows the Kernel Density Estimation (KDE) of the road distances and Fig. 2b shows 
the KDE of road distance between the other four closest sensors from each sensor 
(we chose the value four empirically). The road network distances between sensors 
in the trajectory transitions are greater than 1765.88 m for more than 50% of all 
transitions. Some of these distances are greater than 14 km. However, 50% of the 
distances between one sensor and its four closest sensors along the road network 
are less than 755.61 m. It is likely that the moving objects pass by close sensors. 
Assuming that, we observe that the sensors frequently fail to capture the passage of 
the moving objects. Also, many transitions connect sensors that are far away from 
each other, which means that maybe some observations are missing.

The number of transitions from one sensor to another is in total 7,333,122. If 
the sensors were uniformly distributed, each sensor should have, on average, 26,886 
transitions (i.e., #transitions/#sensors). Table 1 presents the percentiles of the num-
ber of transitions for each sensor. We observed that 30% of the sensors do not appear 

Fig. 2   a KDE of road distances between transitions on the trajectories. b KDE of road distances between 
the 4 nearest sensors
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in any transition, they might be out of service. And 70% of sensors appear in less 
than 25,616 transitions, this number is only 0.35% (i.e., 70th percentile/#transitions) 
of all transitions.

We made the same analysis by removing the sensors without any departure tran-
sition as presented in Table 2. We can observe that some sensors have more transi-
tions than the average. Half of these sensors have less than the average number of 
transitions. The reason for this could be the quality of these sensors since sensors 
with lower quality do not capture all possible observations. Another reason could be 
the distribution of traffic in the city. Sensors placed in regions with lower traffic have 
few observations. However, we know that these sensors are on the main roads of the 
city, which usually are roads with intense traffic.

4.2 � Analysis with data imputation

In this section, we aim at estimating the amount of missing data in the data gener-
ated by the sensors. Missing Data imputation requires to fill the values of features 
that are unknown (or missing) with values that ensure a desired degree of reliability. 
Usually, the tuples and features having missing values are given for data imputation. 
In the case of the sensors, the missing positions are not known. In fact, when two 
sensors appear consecutively in a trajectory, this trajectory may be incomplete and 
there exists a missing sensor, or the vehicle did not pass by any road containing sen-
sors. That means we also have uncertainty as to whether they are missing values, or 
not.

Based on the hypotheses that the drivers usually prefer to choose the shortest 
paths [10], to deal with missing values we take into account the sensors in the short-
est path between two consecutive sensors. Our strategy assumes that, when si , and 
sj appear consecutively in a trajectory, all sensors on the fastest path from si to sj are 
potentially missing sensors. In that way, we complete the transitions according to the 
shortest path between the sensors. We call completed transitions the result of this 
process, formally defined as follows.

Table 1   Percentiles and maximum values for the numbers of transitions starting at each sensor for all 
sensors

PCTL 10 30 50 70 90 Max

Value 0 0 9496 25,616 59,189 247,768

Table 2   Percentiles and maximum value for the numbers of transitions starting at each sensor with tran-
sitions

PCTL 10 30 50 70 90 Max

Value 6906 9869 22,881 39,064 77,635 247,768
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Definition 3  (Completed Transition) Let be pi,j = ⟨eij1 , eij2 ,… , eijn⟩ a sequence of 
distinct and connected edges of the underline road network representing the shortest 
path from si to sj . Let S[pi,j] ⊆ S be the subset of sensors such that sk ∈ S[pi,j] iff the 
path pi,j passes by sk . We define ≺ as a total order on S[pi,j] where sk ≺ sk+1 iff 
dist(si, sk) < dist(si, sk+1) , for all sk, sk+1 ∈ S[psi,sj ] , where dist(si, sk) is the length of 
the shortest path pi,j . The completed transition c_trani,j from sensors si to sj is the 
sequence of sensors ⟨si = sk1 , sk2 , … , skm−1 , skm = sj⟩ , where S[pi,j] =

⋃m

l=1
{ski} , with 

ski ≺ ski+1.

Basically, the completed transition c_trani,j is the sequence of sensors which 
the path pi,j visits, ordered by the increasing distance from si . Note that since the 
road network is a directed graph, c_trani,j may be completely different of c_tranj,i.

From the transitions that appear in the dataset of trajectories, we estimate all 
the completed transitions. Table 3 shows the percentiles of trajectories before and 
after imputation process; and the ratio between the new and the original values 
(length with Imputation/original length). The length is computed in the number 
of sensors.

From Table  3 we can see that, in general, the data imputation doubles the 
original trajectory length, and that the rate increases for longer trajectories.For 
instance, 50% of trajectories had a length of fewer than eight sensors, but after 
the imputation process, the median length becomes 16.

Fig. 3   Original lengths and lengths after imputation of each trajectory in number of sensors

Table 3   Percentiles and mean of 
trajectories lengths

Percentile 10 30 50 70 90

Original 6 7 8 10 16
With imputation 9 12 16 22 37
Ratio 1.5 1.71 2 2.2 2.31
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Figure 3 presents the lengths of all trajectories before and after data imputation, 
which shows clearly the difference.

We analyze the number of imputed sensors considering the transitions that appear 
in the data, to understand how the possible missing values are distributed over tran-
sitions. From 7,164,653 transitions in total, 46.5% of them had some imputed data. 
For these transitions, the average number of imputed sensors is 2.64, and the median 
is 2. We can conclude that more than 25% of all transitions have more than two sen-
sors imputed, which is a significant number considering the distances between sen-
sors. These results indicate that the imputation process effectively complements the 
sensor trajectories.

5 � EST prediction framework

In this section, we present our solution to the EST prediction problem. Our strat-
egy consists of three main steps. The first one is the Pre-processing, which aims at 
pre-computing the sensor pairwise distances and simplifying the representation of 
trajectories. The second is the Learning step which includes data imputation and 
the model training. And finally, the Prediction itself. How these steps interact in the 
proposed model architecture is presented in the next section. Hereafter we explain 
each step.

5.1 � Pre‑processing

The main reason for the prediction errors is the frequent failure of some sensors 
in capturing the passage of moving objects. To compensate this, the data imputa-
tion process fills the object trajectory by sensors (assumed missing values) located 
in the shortest path between the reported sensors (the actual observations). To ease 
this data imputation, in this step, we pre-compute once for all the completed transi-
tions (Definition 3) between every pair of distinct sensors and maintain them in a 
data structure CP that maps each pair of sensors (si, sj) to its completed transition 
c_trani,j , along with the distances between sensors in the road network.

Additionally, to minimize the impact of skew of the locations of the sensors, 
and harmonize the representation of trajectories, we group sensors which belong to 
the same road-network region. The groups form corridors since they tend to chain 
close sensors according to the road distance, as presented in Fig. 4. Once we have 
the clusters, on the training step, we can replace the sensors by their correspond-
ent clusters. The idea is to get a unique representative for dense sensors to simplify 
and harmonize the trajectory representation. This is analogous to stemming in text 
mining. To that end, we define the distance d(si, sj) between two sensors si and sj as 
d(si, sj) = min{dR(si, sj), dR(sj, si)} , where dR(si, sj) is the road-network distance from 
si to sj . Then, we apply the DBSCAN [5] algorithm to cluster the sensors using the 
distance d . We set the MinPts parameter in DBSCAN algorithm, to be equal to one 
since we want the cluster to chain close sensors by density, and tune the parameter 
Epsilon empirically.



	 Distributed and Parallel Databases

1 3

5.2 � Learning process

In the learning step we perform the data imputation and the training process itself. 
Our approach receives the last k observations of a moving object, and the data impu-
tation step prepares the input data to train the model. Our strategy for data imputa-
tion maintains all the completed transitions and the road distances between every 
ordered pair of distinct sensors. We use the completed transitions to enrich the most 
recent sub-trajectory received to increase the amount of information available for 
learning. As a result, we have a new sequence of sensors as input. Obviously, the 
uncertainty remains since the completed transition is only a probable sequence of 
missing sensors along the shortest path, while the real trajectory may use a less 
probable route.

Considering a window of k = |w| last observations of a moving object m given by 
sub_tr = ⟨oi, oi+1, … oi+k−1⟩ , where oj = (m, sm,j, tj) , i ≤ j ≤ i + k − 1 , since we want 
to predict sm,i+k and as this value is known on the training step, the imputation pro-
cess is applied in different ways for training and prediction phases.

We consider two different strategies for imputation in the training phase: full 
imputation and next value imputation. For both of them, we receive sub_tr = ⟨oi, 
oi+1, … oi+k−1⟩ and the target prediction oi+k . The full imputation strategy performs 
the imputation for all transitions, including the transition from the last observation 
on the trajectory to the location to be predicted (which is known in the training 
phase) by completing all the transitions from oj to oj+1 , for all j where i ≤ j ≤ i + k , 
with sensors labels using the completed transitions c_transm,j,sm,j+1 . In the next value 
imputation, we assume that the real target value is the first imputed sensor that 
appears on the completed transition c_transm,i+k−1,sm,i+k , that is the next value just after 
the last observation. Thus, we complete all transitions from oj to oj+1 , for all j where 
i ≤ j ≤ i + k − 1 and change the target.

Figure 5 exemplifies both approaches for data imputation. The light gray circles 
are the originally observed sensors used as input for prediction, the dark grays cir-
cles are the original target predictions, and the dashed squares are the imputed val-
ues. Full imputation maintains the original target, while next-value imputation drops 
it off and replaces it by the first imputed vector just after the last observation O5 . Our 

Fig. 4   Some external sensors in Fortaleza city. Inside ellipses, some corridors identified by the clustering
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idea for the full imputation strategy is to force the model to learn the whole path 
until the observed value. On the other hand, using next-value imputation the model 
learns the next step of the path. After imputation, we replace the sensor identifier by 
the cluster identifier to which the sensor belongs.

5.3 � Data imputation integration on prediction

Data imputation on the prediction phase differs from the one on the training phase 
since the value of oi+k is unknown. Thus, in this phase, we apply the imputation 
by completing only the values until oi+k−1 . Any information about the shortest path 
from the last observed value to the target prediction is not accessible to the model.

After the data imputation process, the new sequences may have an arbitrary 
length. As the model receives vectors with fixed lengths, we defined a parameter 
wmax as the maximum size of the resulting sequence after the data imputation. In 
case the new sequence length is greater than wmax , we discard the values at the 
beginning of the imputed sequence until its length arrived at wmax.

6 � RNN schema for location prediction

This paper extends our previous work [4] by introducing a multi-task approach to 
jointly learn the next sensor and the time slot when the vehicle will reach the next 
sensor. The general RNN schema proposed in [4] was based on the SERM approach 
[21]. However, the SERM model was designed for semantic trajectories derived 
from check-ins; it utilizes a bag of words retrieved from Social Media as a semantic 
feature. Also, SERM estimates users’ preferences and adds this information to the 
output of the RNN to give higher weights to the most preferred locations.

In this work, the RNN model receives a window of the w last observations. Each 
observation has two features: the spatial feature, that corresponds to the sensor label; 
and the temporal feature that is the time slot in a day when the external sensor obser-
vation occured. For instance, the day time can be sliced by intervals of 15 min. Our 
approach represents each feature using the one-hot vecor representation. A one hot 
encoding is a representation of categorical variables as binary vectors. Each value is 
represented as a binary vector that is all zero values except the index of the element 

Fig. 5   Data imputation strategies for training. Circles are real observations captured by the sensors. 
Dashed squares are imputed data. The dark circle is the next sensor to be predicted
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to be represented, which is marked as 1. So given one observation ok = (m, s, t) at 
step k, the spatial feature is a vector lk =

[
lk0 , lk1 ,… , lkn

]
 , where n is the number of 

sensors and lki = 1 if and only if the object was observed at sensor s = ki , such as 
s < n , otherwise lki = 0 . The temporal feature is a vector tk =

[
tk0 , tk1 ,… , tkm

]
 , where 

m is the number of time slots and tki = 1 if and only if the time slot of t = ki , other-
wise tki = 0.

Before discussing the proposed architecture, it is worth to mention that our goal 
is to predict the next location, however during the modeling process, we need to 
consider multiple factors for the next location. One of them is that usually, the tra-
jectories constrained to the road network exhibit strong spatiotemporal regularity—
the current location and time slot can have a strong influence in deciding the next 
location. We believe that a multi-task RNN that learns the time and space features, 
improves the sequential prediction for location. We confirmed experimentally that 
compared to the previous results [4], using the time and space information in the 
training phase our approach learns more meaningful representations, which boosts 
the learning performance of EST prediction.

Figure 6 shows the proposed architecture, described hereafter: 

(1)	 An embedding layer, that applies a linear transformation on each one of the input 
vectors, the spatial and the temporal features, separately. This linear transforma-
tion is responsible for reducing the dimensions of input vectors while maintain-
ing the proximity of vectors with similar patterns in the new space. We employ 
an embedding layer to transform the representation of the spatial feature, and 
another embedding layer to transform the representation of the temporal feature.

(2)	 A layer to concatenate the output of the embedding layers in order to get a unique 
input feature vector for the next layer.

(3)	 A recurrent layer to learn the complex patterns from sequences. The proposed 
solution uses two recurrent layers in parallel, each one receives the output of the 
concatenation layer.

(4)	 Each recurrent layer is connected to a fully connected layer with Softmax as 
activation function, which converts the result of the recurrent layer into the set 

Path
Estimation

Sensors 
Clustering R
N

N

C
on

ca
t

R
N

N

O
ut

pu
t

S
pa

ce

Space

Time

Embedding

[s1, s2, ..., sk]

[t1, t2,...,tk]

O
ut

pu
t

 T
im

e

sk+1

tk+1D
at

a 
Im

pu
ta

tio
n

L
ea

rn
in

g

P
re

-p
ro

ce
ss

in
g

Historical 
Trajectories

Complete
Transistions Clusters

Fig. 6   Architecture of our solution for EST prediction



1 3

Distributed and Parallel Databases	

of probabilities to be assigned to each class label. The proposed model has two 
dense connected layers, one to predict the location and another one to predict 
the time slot. Here the number of classes is the number of sensors (or clusters) 
in the output space layer, and equally, to the number of time slots in the output 
time layer.

This multi-task learning architecture differs from our previous work [4] by including 
a new recurrent layer connected and a densely connected layer that learns the time 
slot. These layers appear in Fig. 6 in the black boxes. From now, we also refer to our 
strategies proposed in [4] as single-task strategies.

In the proposed architecture, the embedding layers are shared with both predic-
tors, their weights are trained based on the mean of the loss function of output space 
and output time. Even though our goal is not to predict the next slot of time, our pro-
posed architecture has an output layer for time. We observe an improvement in the 
experiments in terms of the next location prediction accuracy because the weights 
are better adjusted based on the loss function of space and time outputs. We believe 
this strategy will tune the embedding and result in a better representation of space 
and time features. We confirm our hypothesis since the experiments of the new 
results leveraging this multi-task learning approach reached 85.20% of accuracy, 
more than 20% of the best strategy from the previous results [4].

7 � Experimental evaluation

In this section, we present the experimental evaluation conducted to assess our multi-
task learning approach considering the clustering and the imputation processing.

Baselines As this approach is the continuation of our previous work in [4] which 
employs a pure RNN scheme, and since there are no other competitors in our con-
text as emphasized in Sect. 3, we use the models proposed in [4] as the baselines: 
Basic (B)—the pure RNN scheme; Basic with Clustering (BC)—the basic RNN 
with the clustering strategy; Next Value Imputation (NI) and Full Imputation (FI)—
RNN with the respective imputation strategy; Next Value Imputation with Cluster-
ing (NIC) and Full Imputation with Clustering (FIC)—RNN with the respective 
imputation strategy and clustering. It is worth to mention that B, BC, NI, FI, NIC, 
and FIC are single-task learning models. Furthermore, other baselines are some 
basic approaches for sequence prediction, considering only the sequence of labels, 
here we use the First-order Markov model (1st-Markov) and 5th-order Markov 
model (5th-Markov). We also compared with a multi-task version of the Markov 
models (MT-1st-Markov and MT-5th-Markov), that considers each possible com-
bination of location label and time-slot as a state in the Markov model. Our multi-
task learning approach has some variants, called here: Multi-Task Basic (MT-B) - 
the basic multi-task schema; Multi-Task with Clustering (MT-C); Multi-Task with 
Next Imputation (MT-NI); Multi-Task with Full Imputation (MT-FI); Multi-Task 
with Next Value Imputation and Clustering (MT-NIC) and Multi-Task with Full 
Imputation with Clustering (MT-FIC). It is worth to mention that the RNN models 
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were implemented using [3]. For the experiments with Markov Models, we used the 
implementation available in [7].

Dataset For the purpose of experimental evaluation, we consider the dataset col-
lected from a real application of traffic monitoring, described in Sect. 4.

Experimental methodology In our experiments, we used w = 5 sized sliding 
window (this justifies we used 5th-order Markov Model); the maximum size after 
imputation was wmax = 10 ; and the time interval is 30 min, which means that the 
temporal feature is a vector with 48 dimensions (slots per day). We fixed the time 
embedding and the spatial embedding with size 32 and the user embedding with size 
64. We use Adam [12] as the optimizer, Cross-entropy as loss function and Softmax 
as activation function on the last layer. We evaluate all the metrics using holdout 
80–20. We executed each experiment 3 times and computed the average. For the 
models that use a clustering-based strategy, we vary the value of eps in the range 
(1, 2, 3, 4, 5) km.

Metrics of evaluation The methods were evaluated concerning two metrics: accu-
racy and closeness error. The accuracy is the percentage of correct predictions. The 
closeness error is a measure of the proximity on the road network (given by the road 
distance) from the observed value to the predicted one. The closeness is a comple-
mentary way to estimate the quality of the models, which helps to understand if 
the predicted sensors are close or not from the expected sensors. For the cluster-
ing-based approaches, the closeness error is defined as the maximum road distance 
between the sensors in the predicted cluster and the observed cluster. The maximum 
distance intra-clusters is used to not benefit the clustered approaches in comparison 
to the other methods.

7.1 � Evaluation of accuracy

In this section, we study how the single and the multi-task learning models per-
form in terms of accuracy. Table 4 presents a comparison of the accuracy for the all 
evaluated models. For the clustering-based strategies, we report the accuracy for eps 
value with the best-achieved result.

Table 4   Comparison of accuracy between the single-task models and the multi-task models, the best 
results for single-task and multi-task models are in bold letters

Single-task models Accuracy (%) Multi-task models Accuracy (%)

1st-Markov 45.08 MT-1st-Markov 45.24
5th-Markov 42.71 MT-5th-Markov 39.81
B 48.07 MT-B 46.71
BC 47.20 MT-BC 48.49
NI 32.26 MT-NI 32.48
FI 41.28 MT-FI 73.33
NIC 65.84 MT-NIC 65.56
FIC 41.14 MT-FIC 85.20
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Considering the single-task learning models, we see that in general, the RNN 
based models outperform the Markov models. We believe the RNN based models 
are more resilient to the noise introduced by the missing sensors than the Markov 
model. NIC model reached the best accuracy, with 65.84%, followed by the basic 
model with a single RNN (B) with 48.07%. However, it is worth mentioning that 
NI reached lower accuracy, only 32.26%. This means that only clustering the 
sensors or using the next value imputation step does not improve the accuracy 
such as combining both in the same model. The second worse model was the 
5th-Markov, with 42.71%. The full imputation strategy with clustering (FIC) does 
not outperform FI, perhaps because the noise of the full imputation combined 
with the clusters is significant and does not add real value to the model. Table 5 
reports the accuracy of the approaches that use the clustering strategy (BC, NIC, 
FIC) and how they perform when eps varies. The best eps value is eps = 5 for 
NIC and eps = 1 for FIC, which indicates that higher intra-cluster distances 
impact more FIC than NIC, adding noise to the learning process. The accuracy 
for BC is slightly the same when eps varies, which highlights the effectiveness of 
the imputation approaches.

Considering the multi-task learning models, MT-FIC outperforms the other 
approaches, achieving 85.20% of accuracy that is 20% better than NIC (the best 
result of the single-task learning approaches), followed by MT-FI with 73.33% 
and then by MT-NIC with 65.56%. While MT-FIC and MT-FI outperform all sin-
gle-task learning models, MT-NIC performs sightly similar to NIC. But we can 
claim that in general, multi-task learning models boost the learning performance 
compared with single-task learning models. The multi-task version of Markov, 
MT-5th-Markov, had performed slightly worse than 5th-Markov. Overall, the 
models MT-FI, MT-NIC, and MT-FIC seem to be benefited from the use of multi-
task learning and are resilient to noise since both imputation and clustering can 
add some noise in the data. Table 5 reports how the accuracy of multi-task clus-
tering-based (MT-BC, MT-NIC, MT-FIC) approaches changes when eps varies. 
The best eps value is eps = 5 for MT-NIC and for MT-FIC, which indicates that 
differently from NIC and FIC, higher intra-cluster distances do not impact nega-
tively the accuracy and the multi-task learning can adjust the noise introduced 
by them into the learning process. MT-BC does not improve the results with the 
variation of eps, which highlights once again the effectiveness of the imputation 
approaches combined with clustering.

Table 5   Accuracy of the 
approaches that use the 
clustering strategy when eps 
varies, the best result of each 
approach is in bold letters

eps (km) 1 2 3 4 5

BC 46.31 47.20 45.95 46.51 46.67
NIC 34.43 38.07 43.98 52.96 65.84
FIC 41.14 40.33 38.62 35.43 30.23
MT-BC 48.48 47.56 48.20 47.34 46.09
MT-NIC 34.03 37.85 43.83 54.48 65.56
MT-FIC 72.47 74.01 79.52 82.80 85.20
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7.2 � Evaluation of closeness

To evaluate the quality of the models based on the closeness error, we calculate the 
closeness error of each prediction on the test set and the percentiles of these values 
until the 90th percentile. For the clustering-based strategies, we report the closeness 
error for eps value with the best-achieved result.

Figure 7 presents the results of closeness error for all multi-task learning mod-
els and for the best single-task learning models in terms of closeness, NI and NIC 
( eps = 5 ). The single-task approaches NI and NIC achieve 90% of all predictions 
with closeness error less than 2.7 km. Although NI is the model with worse accu-
racy, it predicts closest values when compared to the other single-task models. NI 
achieved 40% of all predictions with closeness error less than 105 m. By looking at 
the percentile that corresponds to the top accuracy of NIC ( eps = 5 ), 60% of all pre-
dictions report the closeness error less than 782 m. We refer our previous work [4] 
for a more detailed evaluation of single-task approaches.

MT-FI outperforms the other models by achieving 70% of its closeness error 
equals zero (as expected considering its accuracy), 80% less than 1.1 km and 90% 
less than 2.7 km. The second-best model is MT-NI, that for 60% of samples achieved 
closeness error equal to zero. The clustering-based approaches, MT-NIC (eps = 5) 
and MT-FIC (eps = 5) achieved in 90% of closeness error less than 3.2 km and 3.5 
km, respectively. However, the 80th percentile for MT-NIC was 1.4 km and MT-FIC 
was 1.1 km. If we compare MT-NI with MT-NIC and MT-FIC, despite MT-NI has 
more samples with closeness error equals to zero, MT-FIC and MT-NIC are bet-
ter until 90% of cases. The other models, MT-B and MT-BC, achieved promising 
results until the median, then the closeness error increased significantly when com-
pared to the other RNN-based models. The closeness error of MT-1st-Markov and 
MT-5th-Markov increased significantly after 50% of cases.

Fig. 7   Comparison of closeness error of multi-task models
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All in all, we can conclude that the multi-task learning approach could improve 
the quality of models based on the full imputation strategy. Figures 8 and 9 present, 
respectively, how the closeness error of MT-NIC and MT-FIC changes when eps 
increases. Concerning the MT-NIC strategy, even though the better accuracy was 
obtained with eps = 5, the model with eps = 1 found better closeness error for 60% 
of cases. After the 70th percentile, the models with eps = 3 and eps = 4 started to 
become better in terms of closeness error. Finally, MT-NIC with eps = 4, 90% of the 
closeness error was less than 2.4 km, the lower value of this percentile. Similar to 

Fig. 8   Comparison of closeness error of MT-NIC when eps changes

Fig. 9   Comparison of closeness error of MT-FIC when eps changes



	 Distributed and Parallel Databases

1 3

MT-NIC, MT-FIC with eps = 1 obtained closeness error equals to zero for 50% of 
cases, and less than 55 m for 60% of cases. However, if we consider more samples 
with eps = 4 and eps = 5, the results improved. With both eps = 4 and eps = 5, in 
90% of cases, the closeness error was less than 2.5 km, while for eps = 1 the 90th 
percentile is 3.3 km.

7.3 � Final considerations

From the experiments, we observe that in terms of accuracy, the multi-task 
approaches perform better, or at least similar, when compared to their equivalent 
single-task learning models, except MT-B that achieved lower accuracy than B. 
Full imputation strategy helps the models to improve accuracy. While FI achieved 
41.28% of accuracy, its multi-task version achieved 73.33%. The biggest improve-
ment was obtained by MT-FIC. While FIC, its single-task learning version pre-
sented 41.14% of accuracy, its multi-task version achieved 85.20%. This shows the 
effectiveness of a multi-task strategy when applied together with the proposed pre-
possessing steps of data imputation and clustering.

Considering the closeness error, the best multi-task learning model was MT-FI 
with 70% of samples with closeness error equal to zero and 90% less than 2.7 km, 
while the best single-task model had the same result for the 90th percentile, but it 
got only 40% of the closeness error equal to zero. We also highlight that the multi-
task learning models that use only imputation or imputation and clustering strate-
gies had 70% of closeness error less than 1 km, while in their equivalent single-task 
learning models, only NIC had the 70th percentile of closeness error less than 1 km. 
This confirms the better performance of our multi-task learning proposal.

Finally, there is a trade-off for the choosing of eps. Big eps values produce big-
ger clusters and consequently a smaller number of sensors labels, which helps to 
improve the accuracy. As smaller is the number of sensors labels, the model has 
more ability to learn from them. Also, by clustering the sensors lead us to better 
accuracy in a clustered model, this is expected since it could refer to many possible 
sensors. Huge clusters also imply higher closeness errors. A proper value to eps is 
an intermediary value that group sensors that are not that far, maintaining a higher 
accuracy but also a smaller closeness error. For our data set and for the best cluster-
ing-based algorithms (MT-NIC and MT-FIC), the best eps were 3 km and 4 km. We 
can observe from Fig. 2, that most of the distances between sensors transitions are 
less than 4 km, which indicates that the distribution of distances between consecu-
tive sensors in a trajectory, gives us a good cold start to define the eps value.

8 � Conclusion and future work

In this paper, we discussed the external sensor trajectory (EST) prediction problem. 
EST may capture very different mobility patterns since they are not restricted to a 
fleet or a community of users. They are also sparse, incomplete and uncertain. We 
provided a data analysis of EST which evidenced the sparsity and incompleteness 
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of this data. We investigated an approach to deal with the missing data of external 
sensors. We proposed a new multi-task learning schema based on RNN to learn both 
time and space information in order to solve EST prediction. We evaluated the pro-
posed scheme using real-world data. The experiments showed that our method could 
increase the accuracy by about 42% compared to the Markov Model analyzed and 
about 37% compared to the basic RNN. Also, our approach is more precise concern-
ing the closeness error. As future work, we plan to study how to learn from road dis-
tances and minimize the closeness error. We also intend to improve the data imputa-
tion method to take into account the uncertainty coming from this process itself.
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